Soil Organic Matter Its Characteristics and Roles in Agricultural Environments

Kiyoshi Tsutsuki
Obihiro University of Agriculture and Veterinary
Medicine

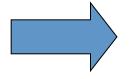
Wise-being in the forest told

Homo ab Humo

- Human was born from a rich soil containing large amount of
- Human Humus Humidity

There is a profound connection between human, humus, and humidity.

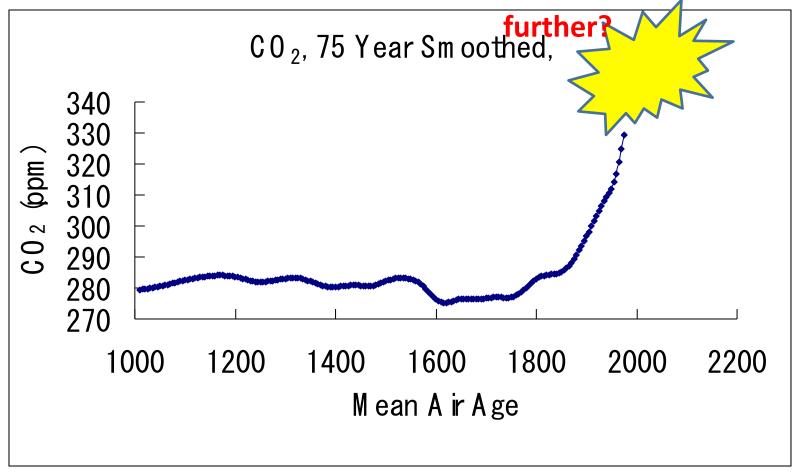
Sleeping mind of human "Terra as the mother"


Do you feel soil dirty?

Take a clod of soil into your hand, watch and smell it.

We will be relieved by such soils:

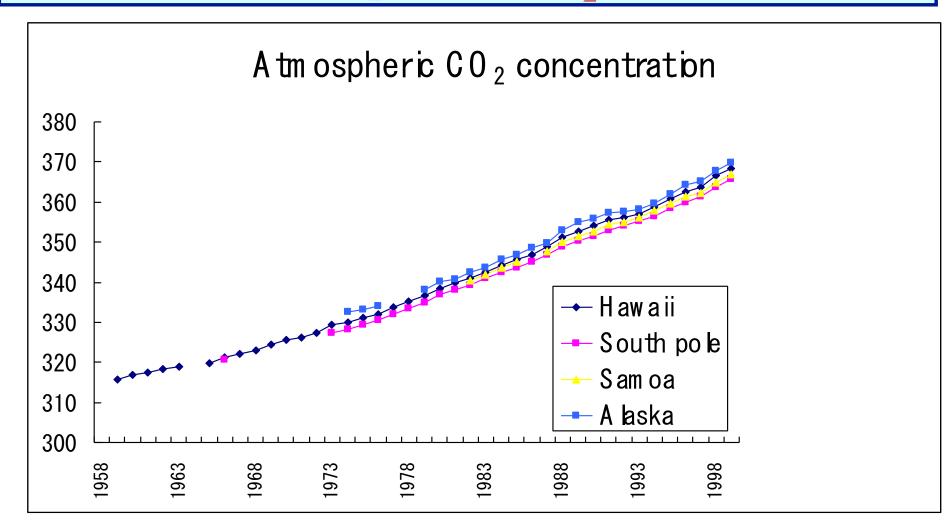
- Black soil
- Soft soil
- Good smelling soil
- Soil in which small worms are living


Such soils contain a suitable amount of organic matter.

Soil breeds life.

Evidence for this fact is

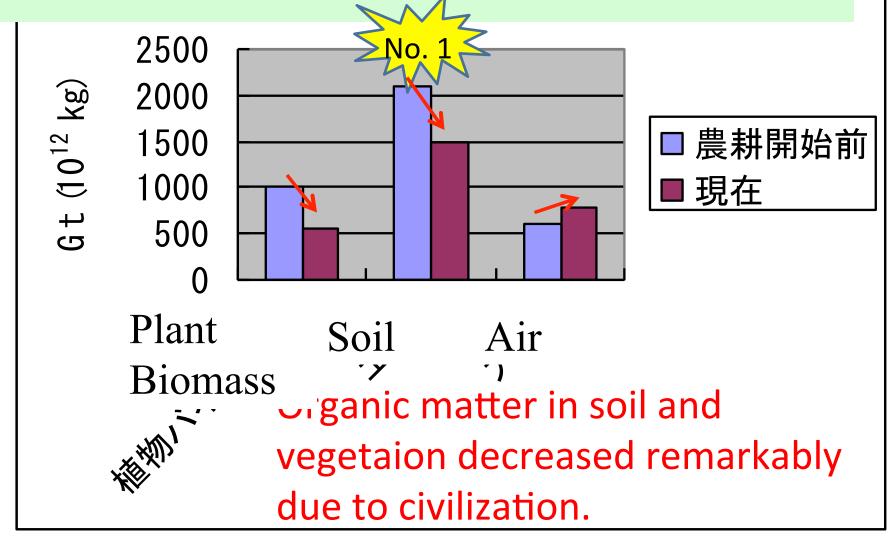
Soil Organic Matter.


What will occur

Change in ambient CO₂

(Ice-core data of antarctics)

Increase in atmospheric CO₂ concentration



Stocks of carbon on the surface of earth

Stock pools		Stored amount
		10 ¹² kg
Earth		
Plant biomas	S	550
Soil humus		1500
Atmosphere	1850 (CO ₂ 260 ppm)	560
	1890 (CO ₂ 290 ppm)	630
	2000 (CO ₂ 390 ppm)	820
Ocean	<u>-</u>	38000
Carbonate sa	alts	20x10 ⁶
Dissolved org	ganic matter	600
Solid suspension and sediments		3000
Earth crust (for	ossil fuel)	4000
Total amount		44800

Hunt(1972), Paul and Clark(1989), Eswaran et al.(1993) CO_2 concentration was calculated from ice-core data in Law Dome Antarctics.

Distribution of carbon on the earth

Humic substance is

- The most abundant organic matter on the earth surface. As carbon amount
 1500 Gt (10⁹ t, 10¹² kg)
- 3 times more abundant than plant biomass
- 2 times more abundant than CO₂
 - 2100 Gt of humus carbon in pre-historic age.

Biomass production and respiration/combustion on the earth (109 t/year)

	Biomass production	CO ₂ formation
Plant	500	34.5
Animal	0.5	4.1
Human	0.1	0.7
Microbes	1.0	112
Wild fire		6.9
Volcano		0.15
Factory		15
Total	502	173.5

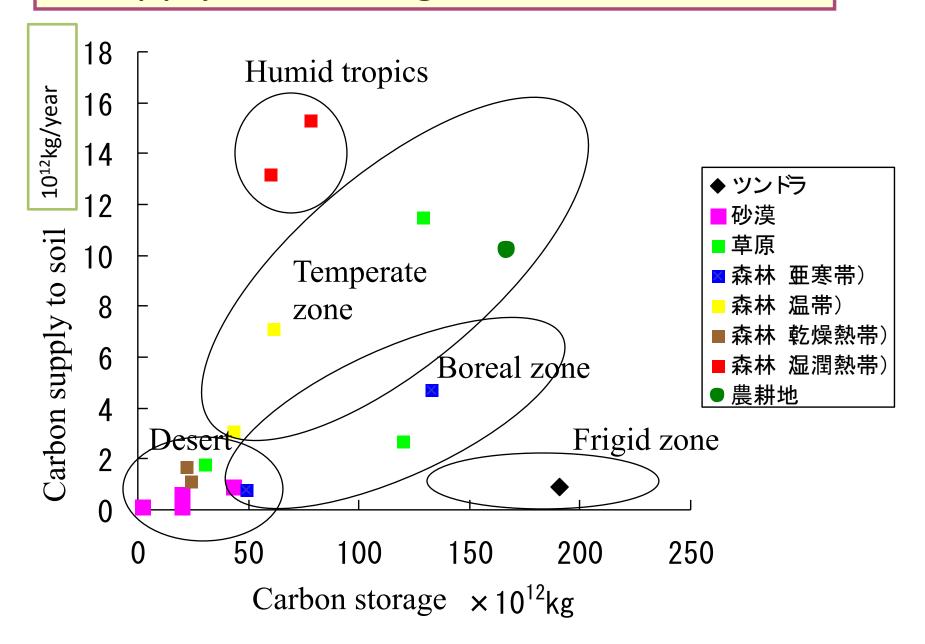
Emission of CO₂ due to human activity

Factors	Increase rare of CO ₂ carbon	
	Gt (10 ⁹ t)/year	
Fossil fuel combustion	7	
Land use change	2.2	

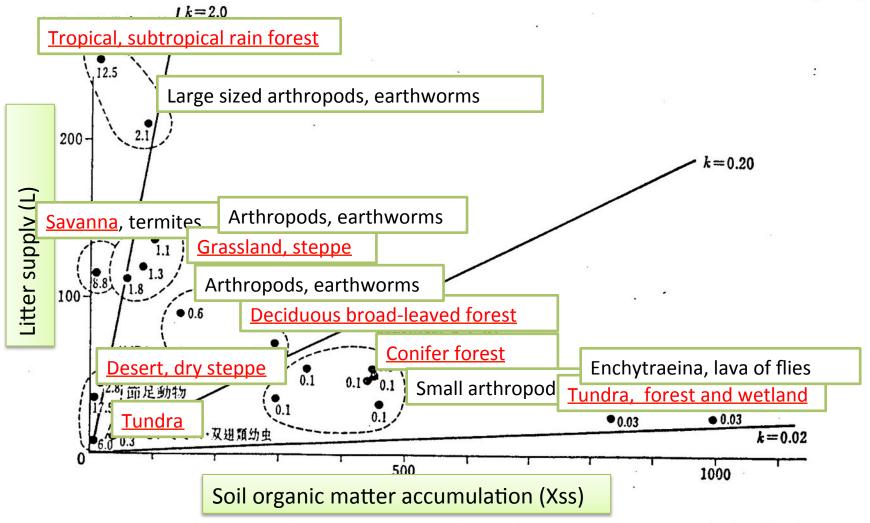
Land-use change

Forest clearing
Slush and burn
Grassland to upland field

Large amount of gas is emitted from soil surface


World energy consumption (2003)

Source	Consumption (pequivalent 10			
Petroleum	36. 4			
Natural gas	23. 3 85. 5		©O ₂ emission	
Coal	25. 8			
Atomic	6. 0	10 0	→heat emission	
Hydraulic	6. 0	12. 0		

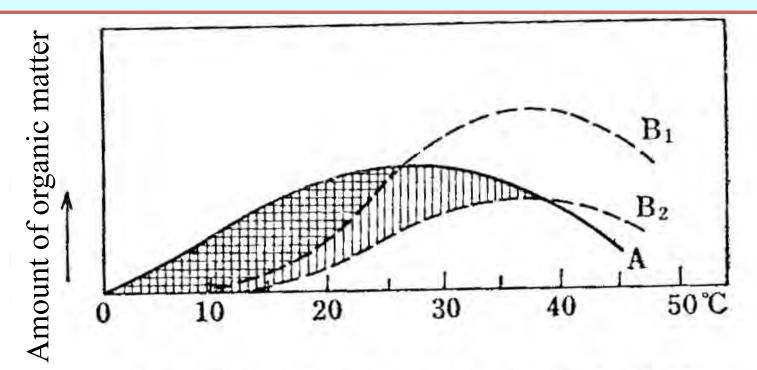

Energy consumption per capita

- World 1.7 ton annually (petroleum equivalent)
- Japan 4.1 ton annually
- USA 8.0 ton annually
- Human activity causes the increase in atmospheric CO₂ concentration.
- Plant and soil absorb CO₂.

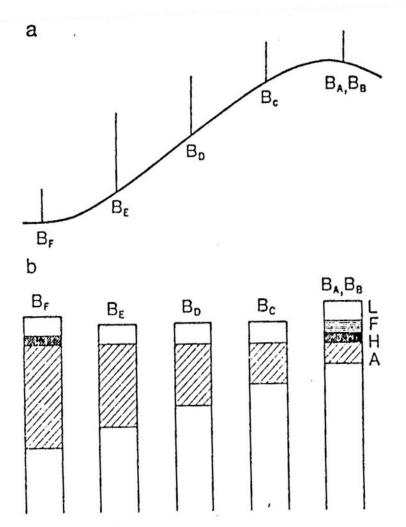
Supply and storage of carbon in soil

Litter supply and SOM accumulation

主要な生態系型の落葉供給量, (L), 土壌有機物の蓄積 (X.,), 分解率 k=L/X., および 主要な分解動物群 図中の数字はそれぞれの地点での k の値を示す。


Primary forest in Baybay, Leyte

Primary forest soil profile in Baybay, Leyte


Factors affecting SOM accumulation: temperature and moisture content of soil

- Aerobic upland soil
- Anaerobic flooded soil
 - A Organic matter production by plant
 - B₁ Organic matter decomposition in aerobic soil
 - B₂ Organic matter decomposition in anaerobic soil

Amounts and Turnover Rates of C and N in the Microbial Biomass for Cultivated Soils for Three Locations

Soil and Location	Microbial C	Microbial N	C Inputs	Nitrogen Flux through Microbial Biomass	Microbial Turnover Time
	ka/ha	ka/ha	•	kg/ha/yr	yr
Temperate				<i>J.</i> , ,	•
England	570	95	1.2	34	2.5
Canada		300	1.6	53	6.8
Tropical					
Brazil	460	84	13	350	0.24

Schematic representation of soil types (B_A-B_F) of Brown forest soil. a: topographic location; b: A_0 and A horizons. Vertical lines indicate growth of the tree.

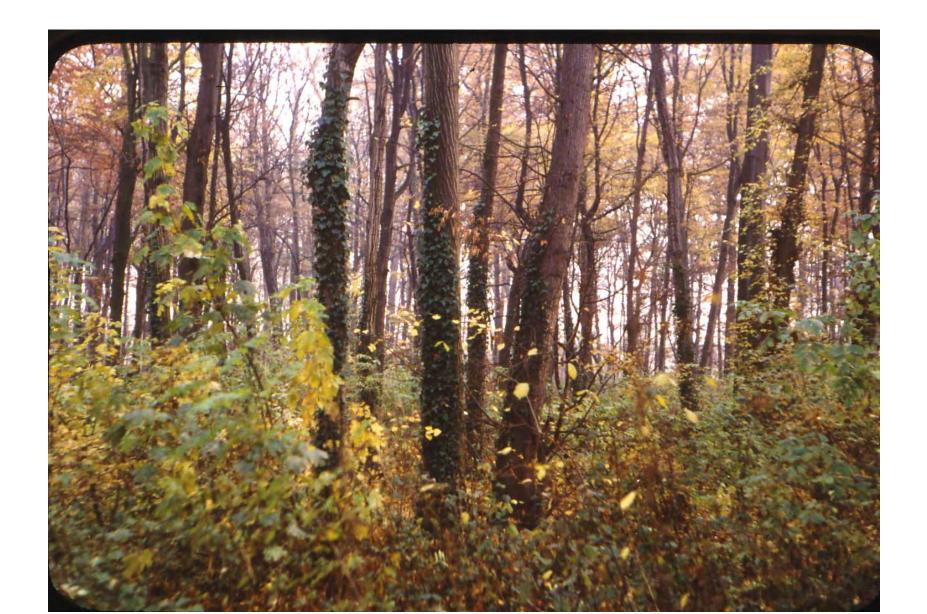
Red pine forest

(Yaotsu, Gifu prefecture)

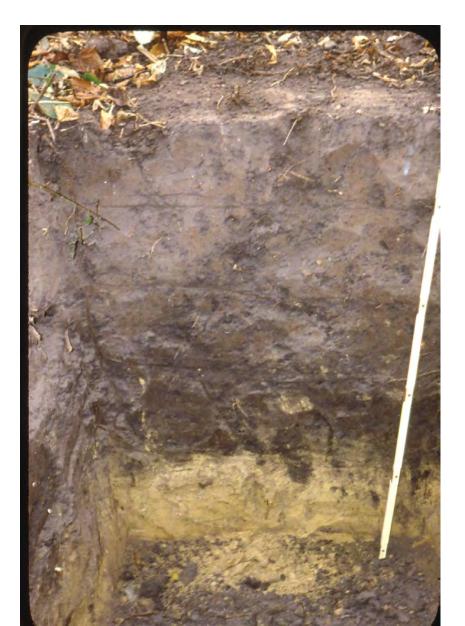
Brown forest soil B_B type (Yaotsu, Gifu)

Litter layer of forest soil (O, A₀ layer)

Peat soil in Bibai



High moor peat soil profile in Bibai

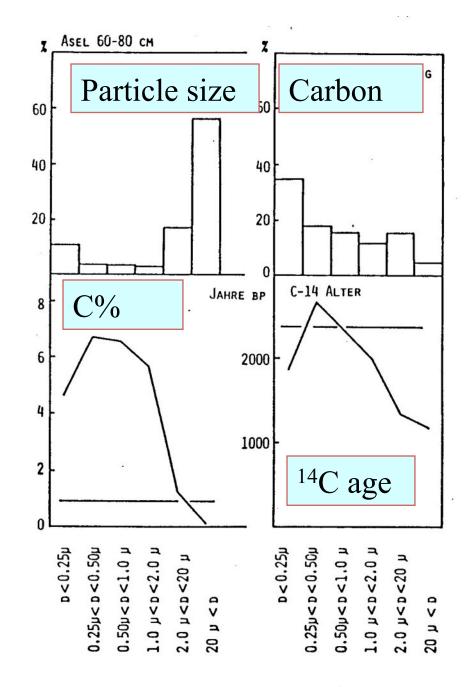


Peat soil with dressed soil (Nanporo town)

Asel forest near Hildesheim, Germany

Black soil in Asel forest, Germany

Wheat field in Soellingen/Germany



Black soil in Soellingen upland field

Soil organic matter stabilization on different size of soil particles

Organic matter bound to clay lasts long in soil

Stabilization and abundance of organic matter constituents in soil				
Constituents	Abbreviati on	Mean Residence Time	S (kg)	A ₀ (kg)
Fresh organic matter (yearly imput)				1000
Decomposable Plant Material	DPM	1	10	10
Refractory Plant Material	RPM	3.9	470	120
Biomass	BIO	25.9	280	10.8
Physically stabilized organic matter	POM	94.8	11.3×10 ³	119
Chemically stabilized organic matter	COM	2565	12.2×10 ³	4.76
Whole Soil Organic Matter	SOM	1334	24.3×10 ³	265
Jenkinson and Rayner, Soil Scinece 123, 6, 1977				
S (kg): Expected accumulation of organic matter after 10000 years				
when 1000kg ha ⁻¹ of fresh organic matter is incorporated every year.				

 A_0 (kg): Yearly gain of soil organic matter (kg ha⁻¹),

Calculated from S and meanage. $A_0 = S/Average Age$

Accumulation of organic matter in soil

$$S = (1/log_e 2) A_0 H$$

= 1.44 $A_0 H$

S: Accumulated amount of organic matter after infinite years

A₀: Added amount of organic matter in one year

H: Half life of organic matter

1.44H: Mean residence time